The Molecular and Crystal Structure of 6-Methoxy-8-Nitro-5(1*H*)-Quinolone and its Dielectric Properties

By M. SAX AND R. DESIDERATO*

The Biocrystallography Laboratory, Veterans Administration Hospital, and the Crystallography Laboratory, University of Pittsburgh, Pittsburgh, Pa, 15213, U.S.A.

and T.W. Dakin

Westinghouse Research Laboratories, Churchill Boro, Pittsburgh, Pa. 15235, U.S.A.

(Received 11 December 1967 and in revised form 28 April 1968)

A crystalline substance that was assumed on chemical grounds to be 5-hydroxy-6-methoxy-8-nitroquinoline is shown by a three-dimensional X-ray analysis to consist predominantly of 6-methoxy-8nitro-5(1*H*)-quinolone (I), although the presence in small concentrations of the 5-hydroxy and acinitro tautomers could not be ruled out. The crystals are orthorhombic and the space group is $Pca2_1$. The unit-cell dimensions are $a=18.647\pm0.006$, $b=6.363\pm0.003$ and $c=7.730\pm0.003$ Å. V=917 Å³, Z=4and $D_m=1.62$ g.cm⁻³. The conventional R value based on 829 structure factors is 0.051. The structure contains a bifurcated hydrogen bond wherein the hydrogen atom attached to the quinoline nitrogen is hydrogen bonded intermolecularly to the oxo group and intramolecularly to one of the nitro oxygen atoms. An extraordinarily short C-N distance, 1.404 Å, is observed between C(8) of the quinoline ring and the nitro group, which deviates by only 7° from coplanarity with the ring. Dielectric and tangent loss measurements on powder samples indicated that conversion of (I) to a tautomeric form, through a proton transfer induced by the applied electric field, is not evident within the range of frequencies from 50 to 10^{10} Hz.

Introduction

The difference in color between the brick red crystals of the compound which Elderfield (1946) designated as 5-hydroxy-6-methoxy-8-nitroquinoline (II) and the nearly colorless crystals of 5-acetoxy-6-methoxy-8-nitroauinoline seemed irreconcilable with the similarity in the structural formulas proposed for these molecules. This apparent anomaly led us to speculate that a greater diverseness exists in their molecular structures than merely the substitution of an acetoxy by a hydroxy group. In order to compare the stereochemical details of these molecules, the crystal structures of both compounds were determined. The results of the analysis of the acetoxy compound have been reported previously (Sax & Desiderato, 1967). The crystal structure of the unesterified compound is considered in this paper. The unusual solubility of the red compound cast further doubt upon the validity of assuming structural formula (II) for this compound. For instance, although it is insoluble in most of the usual solvents at room temperature, it dissolves easily in 18N sulfuric acid to yield a pale yellow solution from which red crystals are grown by careful dilution with water. This reaction suggests that the red form is either the cross conjugated tautomer (I) or the acinitro compound (III), which transforms into the enolic form on dissolving in sulfuric acid. Our analysis shows that the molecules in the red crystals are predominantly (I), although the tautomeric forms (II) and (III) may be present also in lower concentrations. Dielectric constant measurements were made on the red crystals to see if interconversion of the tautomers could be induced by an applied electric field.

Experimental

X-ray diffraction

Single crystals of 6-methoxy-8-nitro-5(1*H*)-quinolone (I), $C_{10}H_{18}O_4N_2$, were prepared for us by Dr S. M. Sax. The compound crystallizes in the orthorhombic system. From the systematic absences, 0kl with *l* odd and *h0l* with *h* odd, the possible space groups are *Pcam* and *Pca2*₁. The latter space group was chosen to avoid a disordered model as would have been required in *Pcam*. The unit-cell dimensions and their estimated standard deviations were obtained from 2θ measurements of axial reflections that were made on a Picker full-circle diffractometer using Cu $K\alpha$ radiation $(\lambda\alpha = 1.5418, \alpha_1 = 1.5405, \alpha_2 = 1.5443$ Å). They are as follows $a = 18.647 \pm 0.006$. $b = 6.363 \pm 0.003$, $c = 7.730 \pm$

^{*} Present address: Department of Chemistry, North Texas State University, Denton, Texas 76203, U.S.A.

0.003 Å. Z=4. $D_m = 1.62$ g.cm⁻³ by the flotation method. $D_x = 1.595$ g.cm⁻³. M.W. 220.164. V = 917 Å³.

Both diffractometer and photographic data were collected using Cu $K\alpha$ radiation. Eight hundred twenty five independent reflections were measured in the sin θ range 0.083 through 0.899 on a Picker full-circle automated diffractometer. The crystallographic c axis was set to coincide with the φ axis. An additional six levels of photographic data were collected on multifilm equiinclination Wiessenberg photographs from a crystal rotated about the c axis. These intensities were measured visually by comparison with a calibrated film strip. They were scaled to the diffractometer data by a least-squares method after reduction to structure factor magnitudes. The photographic data used in the analysis were limited to 113 reflections that fell in the sin θ range 0.833 to 0.989 and were not measured on the diffractometer. Spot shape corrections (Phillips, 1956) were applied to the Weissenberg data. No corrections were made for absorption or extinction.

Structure determination and refinement

It was clearly evident from inspecting a three-dimensional E^2 -Patterson synthesis that the fused ring must be tilted relative to the *ab* plane. If *Pcam* were assumed as the space group, then with four molecules in the unit cell, this feature of the molecular packing would require disordering of the atoms across a mirror plane, since this is the point symmetry of the only special position in Pcam that is consistent with the observed systematic absences. Accordingly $Pca2_1$ was chosen for the structure determination. Although the interpretation by inspection of the Patterson function was complicated by the presence of a dominant hexagonal subcell, the structure was found straightforwardly by Patterson superposition methods (Buerger, 1959) which have been programmed for the IBM 1620 computer (Corfield, 1965). Initially the location in the unit cell of a hexagonal moiety of the fused ring was obtained from a '6-atom Symmetry Minimum Function' (Corfield & Rosenstein, 1966). Then a 24-atom multiple minimum function based upon the six-membered ring and its symmetry equivalents yielded twelve of the sixteen nonhydrogen atoms. The remaining four atoms were located in a three-dimensional difference Fourier synthesis phased on these twelve atoms and containing 183 terms with $|F_c| \ge |F_o|$. At this stage of the analysis, the conventional R index, calculated with a single overall temperature factor, was 0.34 for the diffractometer data.

The structure was refined by full matrix least-squares (Busing, Martin & Levy, 1962) using only the diffractometer data initially. The z coordinate of N(1) was fixed during the entire refinement, and the quantity minimized was $\Sigma w(F_o - KF_c)^2$. The weighting scheme was that of Hughes (1941) with $4F_{\min}$ equal to 8. Several very weak reflections and some that appeared to be affected significantly by systematic error were given zero weight. Then the photographic and diffractometer

data were combined, and two variable scale factors were introduced, one for each kind of data. After two more cycles of refinement, the R index was 0.096. At this point, seven of the eight hydrogen atoms were located unequivocally in a difference Fourier synthesis with peak heights ranging from 0.44 to 0.65 e.Å⁻³ for the hydrogen atoms on the ring and from 0.40 to $0.44 \text{ e.}\text{Å}^{-3}$ for those on the methoxy group. One background peak height equaled 0.47 e.Å⁻³ but the remainder of the background did not exceed $0.32 \text{ e.}\text{Å}^{-3}$. Positive regions at potential positions for the eighth hydrogen ranging from 0.36 to 0.470 e.Å⁻³ appeared near N(1), O(16) and O(13), corresponding to tautomers (1), (11), and (111) respectively. During six additional cycles of refinement the atomic coordinates of the seven hydrogen atoms were treated as variable parameters but they were arbitrarily assigned the anisotropic thermal factors of the atoms to which they were bonded. Although the R index was now at 0.064, all of the positive peaks at the various possible positions for the hydrogen atom in question persisted in the difference Fourier synthesis. These seemed plausible on the basis of the stereochemical details of the structural moieties that contained the H atom in question as the following data show: N(1)-H(1) 0.89, O(13)-H(13) 0.91, O(16)-H(16) 0.97 Å; C(2)-N(1)-H(1) 117, N(11)-O(13)-H(13) 119, C(5)-O(16)-H(16) 128° ; H(1)... O(13) 1.99, $H(1) \cdots O(16)$ 2.05, $H(13) \cdots N(1)$ 1.88, $H(13) \cdots O(16) 2 \cdot 28, H(16) \cdots O(13) 2 \cdot 10, H(16) \cdots N(1)$ 2.68 and 2.99 Å, where the latter two distances are to N(1) atoms related by the *c*-glide; H(1)-N(1)···O(13) 38, $H(1)-N(1)\cdots O(16)$ 29, $H(13)-O(13)\cdots N(1)$ 30, $H(13)-O(13)\cdots O(16)$ 35, $H(16)-O(16)\cdots N(1)$ 74 and 68, and H(16)–O(16)··· O(13) 23°.

Coordinates consistent with the structural formula (I) [*i.e.* N(1)-H] were then assigned on the basis of three observations. Firstly, the C(5)-O(16) and N(11)-O(13) bond lengths of 1.25 and 1.27 Å differ significantly from 1.35 and 1.33 Å which would be expected if protonation had occurred respectively at either O(16) or O(13). Secondly, the valency angle at N(1) is 123.8° , as compared with 116.2° in the unprotonated quinoline ring (Sax & Desiderato, 1967). Finally, 0.9 of the integrated electron count in the possible peaks for the hydrogen atom coincided with an N(1)-H bond even though the peak heights at the reasonable sites near N(1) and O(13) were both equal to $0.43 \text{ e.}\text{\AA}^{-3}$ while the one near O(16) was 0.31 e.Å-3. The refinement was terminated after three cycles had been run with a modification of the Hughes scheme, where $\sigma = C|F|$, if $|F| > 4_{\min}$, and $\sigma = C4F_{\min}$, if $|F| \le 4F_{\min}$. $4F_{\min}$ was set equal to 8 and C was a step function in sin θ that was derived from a plot of the range of $\omega \Delta^2$ as a function of sin θ . It was assigned the values 0.153, 0.072, 0.111 and 0.125 in sin θ ranges 0.0-0.2, 0.2-0.8, 0.8-0.9, and 0.9-1.0 respectively. The R factor for 788 reflections of non-zero weight is 0.051 and for all of the 829 reflections it is 0.062. The corresponding weighted R factors are 0.066 and 0.070 respectively.

Table 1. Observed and calculated structure factors of 6-methoxy-8-nitro-5(1H)-quinolone

In each group of reflections with the same k and l indices, the columns are, from left to right, the h index, $10|F_o|$, $10|F_c|$, $10A_c$ and $10B_c$. Following $10|F_o|$, a plus sign indicates that the intensity was collected photographically, while an asterisk denotes that the reflection was given zero weight in the least-squares refinement.

4 8 10 12 14 16 18 22	K= C L= 102 113 113 220 244 244 539 563 563 94 85 85 53 53 53 82 83 83 25 19 19 196 207 2C7 97+ 87 87 K= 1 L=		11 13 14 15 18 0 1 2 3	37 39 39- 65 69 69 49 39 39- 29 27 27 49 42 42- K= 6 L= 0 616 597 597- 73 70 70- 131 121 121 98 100 100 29 28 28	0 12 0 13 0 14 0 15 C 16 17 C 19 C 21 0 1 0 1 0 2	61 63 249 251 33 346 98 98 51 76+ 67 K= 4 171 168 114 107	38- 14- 45 98- 45 35 L= 1 124- 51-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73 70 12* 2 12* 2 14* 43 33* 37+ 32+ 37 532+ 37 5253 236 146 195 139 135 139 168	34 1 4 17 20 105- 178 132 54	62 2 43 33- 31- 211- 78 27- 159	0 2 1 2 3 4 5 6 7 8 9 10	49 252 94 100 53 58 57 66 37 30 25 28 42+ 45 55+ 53 31+ 28 24+ 25 33+ 31	250- 21 54 65 30- 12- 28 40- 28- 8 24-	33 98 19- 9 25- 35- 34- 4 23 19
01234567890	318 340 340 188 246 246 167 190 190 179 177 177 220 235 235 147 156 156 166 97 97 57 56 56 196 201 2C1 298 283 283	- C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 6 7 8 9 10 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 3 0 4 0 5 0 6 0 6 0 7 0 8 0 9 0 10 11 0 12 0 13	216 214 122 115 110 105 131 131 90 89 82 81 86 82 65 65 98 97 139 133	18C- 7 1C4 13C 51 28- 22- 58- 58- 58- 58- 58- 594	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	290 280 5 473 466 5 261 259 7 94 92 8 122 122 9 118 115 1 102 120 2 204 219 3 306 317 2 220 220 2 200 220	97- 449 2 88- 45 36 95 87- 61- 302 153	263- 123- 259 27 113 109 77- 49 210- 95- 158	2 5 4 1 6 1 8 10 1 12 14 16 18	$\begin{array}{c} k = & 0 \\ 10 & 562 \\ 71 & 187 \\ 22 & 127 \\ 69 & 70 \\ 59 & 169 \\ 86 & 83 \\ 65 & 63 \\ 69 & 66 \\ 69 & 74 \end{array}$	L= 3 182 165 117 37- 45 66 57 56 40-	532 86 48- 60 163 50 26 34 62
12 13 14 15 16 17 18 19 20 21	B2 78 78 29 30 30 151 141 141 49 54 54 57 57 57 29 32 32 82 79 79 45 42 42 29 22 22 29 21 21	- 0	2 3 4 5 8 10 11 0 2	12* 0 0 33 31 31- 49 46 46- 16 6 6 36+ 37 37 48+ 43 43- 32+ 32 32- K* 8 L= 0 99+ 88 88- 27+ 13 13	0 14 0 15 0 16 0 17 0 18 C 20 0 2 0 3 C 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3- 85 38- 66 23- 32 L= 1 234- 92 59-	69 19 67 16 7- 17 1- 16 42- 10 21 21- 20 148- 83- 0 5-	5 57 54 5 61 60 7 53 54 8 33 24 9 57 53 0 25 18 2 20+ 14 K= 3 0 114 118 1 69 61	27 17 54- 22 10- 6- 4 L= 2 87 29	47 58 0 11 52- 17- 13- 80- 54-	20 20 1 3 2 2 3 1 4 2 5 2 6 1 7 1	53 54 56+ 54 K= 1 79 365 04 193 59 159 20 218 200 208 200 208 26 126 135 131	14 14- 228- 20- 152- 153- 203 99 130	53- 53- 192 47 155- 44 77 14
0124567890	K= 2 La 0 481 489 489 489 41 53 53- 69 71 71 286 302 302 29 28 26 25 20 20- 135 133 133- 12 13 13 41 37 37- 90 24 25		3 2 4 6 8 10 12 14 16	62* 32 32 K= 0 L= 1 542* 668 484- 432 503 485- 237 252 119 559 593 99 432 419 386- 98 95 93- 151 150 62 90 95 86- 100 100 100	0 5 460 7 132 8 222 9 584- 10 161 11 2C- 12 137 13 39 14	37 39 73 70 82 71 77 80 33 35 65 62 82 80 53 56 77 80 41 34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23- 17- 24 60 22 34- 42- 51- 1 26- 1	2 69 64 3 69 62 4 73 76 5 73 72 7 102 101 8 33 28 9 33 30 1 131 124 2 53 60 3 163 156	3 6- 76 46- 95- 26- 8 50- 58 110-	64 62- 4 55- 35- 11- 29- 114- 14- 111	8 2 9 2 10 1 11 12 13 14 1 15 1 16 1 17	145 249 128 237 143 133 53 50 90 87 53 59 114 110 102 93 102 97 61 55	88- 202- 108- 25 86- 47- 103 88 50- 52	233- 123- 77 43 18- 37- 39- 31 83 16
10 11 13 14 15 16 18 19 20 21 22	YO BB BB 57 56 56 175 175 175 37 36 36 228 220 220 73 66 66 25 9 9 33 28 28 30• 6 6 40+ 20 20 84• 28 28	- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	18 20 20 22 1 2 3 4 5 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 17 3 18 3 21 1 2 82 3 548 4 131- 5 69 6 262- 7 106 8	44+ 44 53+ 47 K= 6 102 103 171 156 82 79 61 62 41 50 57 57 33 33 131 131	23- 46 L= 1 28 130 75- 262 1 40- 315 36-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 10-\\ 130\\ 9\\ 37\\ 16-\\ 36\\ 29-\\ 1=\\ 23\\ 143\\ 18\\ \end{array} $	0 116- 29- 31 1 4- 1- 3 18- 32-	18 19 20 20 21 1 2 1 3 4 5	82 78 37 29 29 30 35+ 30 30+ 29 K= 2 82 84 122 120 273 262 339 330 90 95	72 11- 7- 26- L= 3 9- 117 211 302 78-	30 27 29 29 13- 83 28 155- 134 54
012345678	K= 3 L= (69 70 70 281 273 273 114 1C9 1C4 65 67 67 86 8 88 759 763 763 69 68 68- 90 88 88- 37 30 30	0 0 - 0 - 0 - 0 - 0 0 - 0	7 8 9 10 11 12 13 14 15 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 9 199- 10 109 11 118 12 127- 14 25 80- 80- 1 87 22 33 4	37 28 110 117 33 21 25 20 39+ 41 K= 7 65 64 106 107 49 45 33 34	16- 97 15 18 21- 1× 1 ↓× 1 53- 797- 949 32-	23- 66- 15- 10 36- 36- 46- 1 1 12- 12-	3 41 38 4 163 151 5 265 257 6 118 111 7 102 102 8 98 98 9 57 56 0 53 51 1 98 95 2 139 131	33 45 254 29- 40- 37 1 89- 48	20- 144 42- 108- 90 87- 41 51 34 122	6 1 7 8 1 9 10 1 11 12 1 13 1 14 1 15	.75 1.82 45 44 179 1.77 69 71 135 1.33 82 82 110 116 196 1.88 171 1.77 61 57	22- 27 163- 60- 112 62 38- 75- 134 46-	180 35- 70- 38 73- 54- 109 172- 116 34
10 11 12 13 14 15 17 18 19 20	106 115 115 41 42 42 175 169 169 12° C 0 547 577 577 65 69 69 37 30 30 82 81 81 29 12 12 33 28 28 33 25 25	- 0 - 0 - 0 - 0 - 0 - 0	17 18 19 20 20 21 22 1 22	33 42 30- 94 97 87- 37 29 29- 37 33 12- 27+ 33 12- 30• 5 4 23+ 28 24- K≈ 2 L≈ 1 400 394 298- 379 361 124 273 256 207-	29-5 42-6 2-7 31-6 31-9 3-10 15-1 257-2 339 151-0	61 61 25 20 49+ 47 34+ 37 47+ 46 47+ 46 K= 6 51+ 51 51+ 51 K= 0 363 418	25 8 47- 7 28 8 21 55- 1 L= 1 27 2 2 1 27 2 2 1 24-	55 1 19- 14 2 19 25 14 44- 14 30- 14 20 51- 0 400	3 249 252 4 126 129 5 124 2 6 29 31 8 33+ 26 9 23+ 24 0 43+ 40 K= 5 0 416 385 1 281 277 2 131 124	247 47- 2 21- 24- 2- 35 L= 2 366- 127- 29	51- 120- 1- 23- 9 24- 21 120 241- 121-	16 17 18 19 20 21 1 2 2 3 1	49 44 73 65 53 60 41 39 45+ 31 43+ 34 K= 3 208 210 57 59 175 170 33 29	33 61- 58- 38 30- 7 182- 12 19- 17	29- 23- 14- 7 8- 33- 104- 58 169- 24-
0 1 2 4 5 7 8 9 10	K= 4 L= 1 53• 34 34 34 41 45 45 12• 6 41 45 45 12• 6 6 53 54 54 54 54 54 86 85 85 33 28 28 25 16 10 37 37 37	- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	4 5 6 7 8 9 10 11 12 13	237 238 44- 245 250 229 103 168 163- 155 159 33- 86 84 71- 126 131 63- 41 37 8- 57 59 20 102 166 106- 135 141 26	233- 2 100- 4 42 6 155 8 46- 10 116- 12 36 14 55- 16 6 18 139- 20	428 479 224 248 94 98 122 122 273 270 77 82 131 122 73 72 46 86 73 72 49 52	55 211 81- 95- 270 270 270 276 121 50 59 27-	476- 130- 56 77- 20 31 16- 70 10 42- 11 51 14	3 82 71 4 29 16 5 41 37 6 82 86 7 73 79 8 86 86 9 45 42 C 53 61 1 12+ 25 2 41 45	53 16 15 77 39- 81- 33- 49- 7 33	47- 5- 34- 39 69 28 26- 36- 24- 31-	5 1 6 7 1 8 9 11 12 13 14 15	51 149 45 45 59 159 33 32 73 76 73 73 41 40 90 89 41 39 90 94	10 11 68 28- 60- 43- 18- 65 34 17	148- 44- 144 16 47- 59- 36- 61- 20- 93
11 12 13 14 15 16 17 18 19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0000000000000000000000000000000000000	14 15 16 17 18 20 20 21 22	86 87 52 126 125 78 82 83 40- 73 76 75 82 87 59 24 30 29- 25+ 30 29- 31+ 30 25- 26+ 24 18 K= 3 12 192 181 75	70-20 98 73-20 3-3 3-4 17-5 16-6 165-6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} & 7-\\ 1 & 1 & 2 \\ 0 & 1716 \\ 5 & 346-\\ 2 & 191-\\ 7 & 62-\\ 0 & 127 \\ 5 & 131-\\ 5 & 131-\\ 2 & 1 \\ 5 & 196 \end{array}$	51 1 389-14 847-16 222 12 193-16 49 58 (82 182 65-	3 65 63 4 57 62 5 73 79 6 34+ 34 7 48+ 43 8 42+ 36 K= 6 0 106 91 1 57 52 2 98 94 3 49 53	58- 15 78 27 22- 27 L= 2 26 45 14 27	25- 60 12- 21 37- 23- 87- 26- 93 45	16 17 18 19 20 1 2 3 2 4 1 5	45 48 41 42 20 18 18+ 13 15+ 14 K= 4 69 69 77 79 212 202 06 98 98 94	25- 40 18 3 2 L= 3 60- 59- 168 85-	40 13 3 12- 14- 35 53- 113- 49- 7=
12345678910	41 40 40 20 20 20 20 110 110 110 29 21 21 57 57 57 33 35 35 33 28 28 110 107 107 45 55 55	000000000000000000000000000000000000000	2 3 4 5 6 7 8 9 10	33 31 15- 457 454 426 57 58 53 257 250 176- 94 94 20- 65 58 31- 37 46 23 135 139 21- 94 86 44 86 87 87	27 9 156- 10 24 11 177 12 91 13 49 14 40- 15 137- 16 74- 13 9 18	131 133 90 89 45 45 61 56 139 143 131 122 33 143 65 67 77 87	68- 88 826- 649 86- 860- 122 7- 7 22- 85-	114- 8 40- 27- 11- 129- 10 1- 11 18 463- 18	6 41 38 5 25 24 7 33 26 8 33 26 8 33 26 9 33 42 C 57 53 1 41 47 2 47+ 25 3 34+ 43 8 34+ 43	37- 11 19- 24 33 52- 33- 21- 40. L= 2	3- 21- 17- 9 26 7- 26 13- 17-	7 8 9 1C 11 13 1 14 15 17 18	82 77 82 83 33 29 45 50 65 63 22 123 90 92 37 32 63+ 60 45+ 46	74 70 28- 50- 21- 43- 76- 7- 47- 44	22- 45 4 5- 60- 115- 53- 31 37- 11

Table 1 (cont.)

19	36+ 3	5 36	3	10	41	44	34	28	6	39+	49	11-	48-		K=	5 6	. 5	61	10	12.	5	5- 15-	2-
ı	200 19	5 L# 3 L 84-	172-	11	122	123	36- 103	54-	7	32+ K=	26	26 L# 5	1-	ż	61	54	41-	36-		к.	<u>_</u>		
2	139 14	118	75-	13	65	60	19-	57	2	114 1	20	120	13-	3	94 1 53	01 65	27 53-	97- 38-	0 1	53 41	51 39	28-	27-
4	82 7	8 43	64	15	82	78	42	66-	6	106	109	99	44	5	53	53	ii-	52	Z	37	34	5-	33-
5	98 10	3 86	51	16	61 20	59	39	43-	8	65 53	66 52	66- 52-	2-	67	33 .	25 13	25	12	4	57	49	17-	46
	73 7	5 5	79	18	61	63	53-	34	14	143 1	139	74	118-	8	12.	4	i	4-	6	29	33	24,	22 -
9	102 119	5 99- 3 12	59- 77-	19	41+ 26+	56 26	49	28 25	16 18	90 61	91 64	10-	91 35	10	37 40+	29	0	29-	2	73	74	60-	44
ii	41 30	9	37	- •		3 1	L= 4		20	41+	51	14-	49	12	16+	14	6 24 -	13-	4	175	168 85	168	11-
12	57 5	5 65 5 46-	32-	ĩ	106	110	109	12	1	106	99	79-	59	14	58+	61	57-	23-	8	61	61	61-	3
14	45 41	3 35-	33	2	45	45	37	25-	2	114	114	24	112	4	К= 53•	77 L	39	67	10 12	49 90	103	47-	103
16	43+ 3	15	36-	4	33	41	38	14-	4	200	198	186	69	6	45+	43	38-	22-		K=	11	- 7	17-
17	564 54	51	18	5	65 33	59 32	58 24	13	5	90 69	84 69	25	80 67	8	24+	25	25	1 0	2	45	38	29	25-
1	49 4	26-	34	7	86	89	29-	84	7	82	84	74-	40	,	K=	7 L	= 5	27-	3	53	48	15	46-
2	102 100 57 70	3 50-) 26	96- 65-	8 9	110	107	106	19	9	53	52	43-	28-	2	K=	οL	± 6	2.	5	49	54	51-	18
-	37 30	24-	27-	10	33	31	31	3	10	12+	12	10-	5	0	147 1	49	9- 69	148- 141-	67	73 29	77 29	68 27	36-
7	29 2	s 20-	19	12	12+	24	6-	23-	12	106	105	2-	104	4	155 I	47	126-	76-	8	41	33	9-	31
	25 14	2-	16-	13	61	59	59 10	4 2	13	102	106	33-	101-	6 8	208 2	209 57	154 53	141	10	29	20	15-	8
10	41 3	2 11-	30-	15	45	44	44	ĩ-	15	69	63	35-	53	10	45	44	26	35-	11	29	22	19-	10
11	42+ 3	3 10 7 28~	37-	16	12+	17	42	0 17-	16	29 29	26	20	3	14	188 1	98	195	37	13	33	36	31	19-
13	30+ 3	31-	8-	19	42+	60	ī	60-	18	20+	28	27-	8	16	98 1	02	3	102		90 K=	2 L 88	= 7 57-	67
14	19+ 2 K=	1 16-	14-	с	к= 314	297	238-	177	20	26+	26	22-	15-	0	61	63	49	40-	2	37	37	33-	17
1	40+ 3	32	10	i	286	272	198-	187-		K=	2	L= 5	116-	1	45	45	20	40-	3	61 41	59 35	17	56- 6
4	56+ 4	B 27	39	3	118	114	57	59-	2	86	82	43-	70	3	37	38	6	38-	6	33	27	26-	8
5	39+ 3	33-	6	4	33	27	21	16-	3	53 41	53 36	2-	53- 30-	4	82 12+	80 8	62 8	51- 2-	8	29 41	19 34	33	10
7	43+ 3	9 8-	38-	6	98	99	98	12	6	118	121	102	66-	6	45	36	25-	26	9	12.	8	8-	3
8	53+ 5	7 22	53 26	7	53 69	53 73	8- 59-	52 44	8	114	94	47-	81-	9	12*	24	14	19-	10	уу К=	3.	- " 7	56
	K=	4		9	33	36	32-	16-	.9	151	151	146-	35-	10	33	32	28 29-	15	1	151 65	156	129-	88~ 40-
2	281 31	2 8	111	11	90	98	13-	57-	12	65	62	32-	53-	12	118 1	120	96	72-	3	69	67	66	ii
4	188 19	1 170	89-	12	41	26	26-	32	13	33	26	16	20-	13	61 90	61 97	52 87-	32	6	33	51	16-	10
10	73 7	3 72	13-	14	65	64	60	22	15	49	47	14	44	15	41	37	35-	14-	7	69	11	43	65-
12	82 7 204 20	8 63 C 84-	45-	15	94 33+	43	24	36-	17	33	35	32	13	0	61	63	59	22	ş	122	132	131-	19
16	45 4	7 14	45		K	- 5	L= 4	40-	19	13+	14	14~	5	1	163 1	159	131	90-	2	×=	21	.= 7	17-
18	29 I	9 8 1 L= 4	17-	ĩ	131	127	110	€4-	1	131	128	59-	113	3	41	30	10-	28	3	53	54	15-	52-
0	53 5	3 34	41-	2	73	68 64	49 11-	48	2	41 94	43 95	10-	42~	4	65 33	63 28	50 26	39-	7	33	30 16	13 2-	27-
ż	261 25	3 34	251-	4	73	79	17-	11	4	53	51	51	ō	Ĩ	53	52	26-	46	•	, K=	. 0 1		20-
3	208 19	0 6- 8 78-	160 182-	5	102	104	75 40-	46-	6	37	48 30	17-	24	9	41	37 44	42	14	4	61	67	34	57-
5	241 24	1 188	152-	7	41	47	41-	23	7	94 49	98 42	43	88- 31	10	53 20	48 17	48 8-	2	6 8	41 12+	37	24-	29 8-
7	73 7	4 72-	19	9	57	70	- ş	69	9	73	75	č	75	•••	K=	ંગ	.≖_6			K=	- <u>ī</u> (.= 8	
8	20 2	1 19 9 25-	10	10	25 69	20 81	15-	14	11	25	64 8	45-	45-	1	367	363	322-	167-	2	57	52	19	48-
10	102 9	6 89	37-	12	65	66	31	58	13	53	57	40-	41-	2	37	41	39-	13-	3	33	32	29-	14-
11	86 8	9 59- C 1Cl-	124-	14	54+	80	55-	58-	15	45	51	27	43-	5	73	71	25	67-	6	61	68	64	24
13	224 22	8 176	145-	16	35+	- 44	24-	37-	17	694	69	45-	52-	67	45 98	43	38 71	20	7	25	13	11	6- 17-
15	53 5	4 6	54	С	94	84	84-	8-	ı	184	188	129-	137-	8	12+	5	2-	5-	9	41	27	12	24-
16	102 10	3 18	101	1 2	49 45	44	21-	38- 44-	23	143	138	123	61-	11	29 73	31 85	31- 7-	5 85-	0	106 K	107	L# 8 9-	167
19	53 4	7 44-	18-	3	33	46	46	4	4	29	26	19	18-	12	33	28	15	24-	i	98	97	97-	9-
0	653 63	2 L# 4 3 493	397-	- 5	33 41	48	26-	40 30	6	98	3U 99	95-	26	13	ζ5 K=	4	L= 6	29-	3	65	70	27	65-
í	453 41	1 228-	365-	8	16	15	11-	10-	7	57	59	52	27-	0	114	114	108-	37-	4	33	32	23	22-
3	122 12	3 25-	120-	10	24+	29	28-	5	9	106	111	105-	21-	2	73	75	73	17	6	41	38	31	21-
4	61 6	3 24	58	,	X 25+	# 7 38	L= 4 38-	3-	10	57	63 37	12	61- 33	3	53	53 42	13 33-	26	7	41	39 18	26	28
6	102 10	0 80-	61	ż	53+	76	24-	72	14	36+	32	25-	19-	6	25	19	14	13		K 4	3	L= 8	132-
- 7	73 6 98 10	19 24	65 79-	4	33+	33	32	,c- 9	16	32+	21	13	16-	8	20	24	10	22-	2	37	33	17	28-
9	13 0	8 22-	65-	5	44+	50	44-	24	17	37+	45	41	17	9	45	51	43	27	3	53	57	8	56

The standard deviation of an observation of unit weight $\{\Sigma w[F_o - KF_c]^2/(NO - NP)\}^{\ddagger}$, where NO is the number of observations and NP is the number of varied parameters, is 0.776. The observed and calculated structure factors appear in Table 1. The atomic coordinates, their thermal parameters and the estimated standard deviations are given in Tables 2 and 3. The key to atomic numbering is given in Fig. 1. The atomic form factors used in the refinement are taken from International Tables for X-ray Crystallography (1962).

Discussion

The molecular and crystal structure

Since positive peaks, estimated to be $1-2\sigma$ in the electron density, appear in the final difference synthesis

A C 25B - 13 *

at positions near O(13) and O(16) consistent with (II) and (III) respectively, it is uncertain whether the molecule exists in tautomeric forms or in a single configuration of the atoms. The results in Table 4 would be regarded as weighted averages of parameters in the tautomers, whereas in a single configuration of atoms they could be analyzed in terms of resonance structures. In either case, the cross conjugated structure (I) makes the largest contribution to the observed molecular parameters, although the aromatic (II) and acinitro (III) structures are significant too, as is evident from the bond lengths in the keto and nitro groups. The C(8)-N(11) bond is considerably shorter than commonly observed in nitro groups (Williams, 1967) and the orientation of this group is favorable for π bonding between C(8) and N(11) as it deviates by only 7.0° from copla-

 Table 2. Fractional atomic coordinates and their estimated standard deviations

	Fractio	onal coordinate	$s \times 10^4$
	x	у	Z
N(1)	2546 (2)	5678 (5)	2429
C(2)	3247 (2)	5588 (7)	2336 (10)
C(3)	3593 (3)	3914 (7)	1606 (10)
C(4)	3174 (2)	2337 (7)	868 (10)
C(5)	1995 (2)	705 (6)	197 (9)
C(6)	1233 (3)	.957 (6)	316 (9)
C(7)	935 (2)	2664 (6)	1089 (9)
C(8)	1345 (2)	4284 (6)	1846 (8)
C(9)	2099 (2)	4184 (5)	1751 (8)
C(10)	2426 (2)	2431 (5)	938 (9)
N(11)	976 (2)	5880 (5)	2726 (8)
O(12)	317 (2)	5757 (5)	2901 (8)
O(13)	1324 (1)	7376 (4)	3347 (8)
O(14)	866 (2)	-662 (5)	-434 (8)
C(15)	105 (3)	- 688 (9)	- 197 (10)
O(16)	2297 (2)	- 797 (4)	-482 (9)
	Fraction	onal coordinate	s $\times 10^3$
H(1)	236 (3)	671 (8)	305 (10)
H(2)	345 (3)	704 (10)	288 (9)
H(3)	412 (4)	382 (10)	152 (10)
H(4)	340 (3)	127 (11)	46 (10)
H(7)	44 (3)	276 (9)	104 (11)
H(8)	-17 (4)	44 (12)	- 85 (11)
H(9)	-6(3)	-210 (11)	- 79 (11)
H(10)	-5 (4)	- 69 (10)	112 (11)

narity with the ring. This conformation and the negative charge on the nitro oxygen atoms is stabilized further by the internal hydrogen bond between N(1) and O(13). In 5-acetoxy-6-methoxy-8-nitroquinoline, on the other hand, the aromatic form contributes 91 percent to the resonance structure while the cross conjugated and quinoidal forms are negligible contributors, so that there is little π bonding between the ring and any of the substituents.

The shape and conformation of the molecule and the molecular packing are shown in Figs. 1 and 2. The ten atoms of the fused ring are within 0.015 Å of the least-squares plane, 0.01202X-0.48307Y-0.87549Z = -0.05052, where the coordinates are expressed in Å units and are referred to the crystallographic axes. However, the probability that the small displacements from the ring are non-random is ≥ 0.99 since the χ^2 value is 20. The respective displacements of atoms N(11), O(12), O(13), O(14), C(15) and O(16) from the plane are 0.059, 0.266, 0.028, -0.088, 0.081 and -0.030 Å. The method of Scho-

Fig.1. Inter- and intramolecular hydrogen bonding shown in two molecules of a hydrogen bonded chain in crystalline 6-methoxy-8-nitro-5(1H)-quinolone.

Fig.2. A stereoscopic view along c showing the molecular packing in 6-methoxy-8-nitro-5(1H)-quinolone.

Table 3. Anisotropic thermal parameters and their e.s.d. in the form: $\exp[-(h^2\beta_{11} + \cdots \cdot 2kl\beta_{23})]$

	$\beta_{11} \times 10^5$	$\beta_{22} \times 10^4$	$\beta_{33} \times 10^4$	$\beta_{12} \times 10^4$	$\beta_{13} \times 10^4$	$\beta_{23} \times 10^4$
N(1)	219 (10)	151 (7)	129 (8)	-1(3)	-3(3)	-10(7)
C(2)	247 (13)	181 (11)	152(9)	-3(3)	5 (3)	-19(7)
C(3)	228 (13)	226 (13)	186 (10)	-8(4)	3 (3)	-22(9) -32(10)
C(4)	238 (13)	166 (11)	152 (10)	10 (3)	-1(3)	-16(8)
C(5)	251 (14)	171 (11)	137 (10)	6(3)	-4(3)	-15(10)
C(6)	272 (14)	152 (10)	131 (9)	-8(3)	-5(3)	-27(9)
C(7)	217 (12)	168 (11)	144 (8)	6 (3)	-1(3)	-3(8)
C(8)	218 (12)	136 (10)	140 (11)	7 (3)	$-\hat{2}(\hat{3})$	-24(8)
C(9)	246 (12)	121 (̈́9)	88 (8)	-1(3)	-4(3)	$\frac{2}{6}(0)$
C(10)	232 (12)	152 (8)	113 (8)	0 (3)	0 (3)	11(7)
N(11)	230 (11)	134 (8)	139 (8)	10(2)	6(3)	-17(7)
O(12)	226 (9)	220 (9)	228 (9)	12(2)	4(2)	-5(7)
O(13)	269 (9)	157 (7)	215 (8)	-1(2)	3(2)	-74(7)
O(14)	294 (10)	176 (8)	201 (8)	-15(3)	$-2(\bar{3})$	-73(7)
C(15)	262 (16)	253 (15)	177 (12)	-14(4)	-14(4)	-12(11)
0(16)	307 (13)	199 (8)	246 (10)	15 (2)	10 (2)	

Table 4. Bond lengths and angles

The e.s.d.'s in parentheses refer to the last digit. Where two values appear for a bond length, the effect of the thermal motion has been excluded in the first figure while the second includes a correction baced upon the assumption of a 'riding' motion for the atoms (Busing & Levy, 1964).

i	j	k	Angle (<i>ijk</i>)	Distance (<i>ij</i>)
C(9)	N(1)	C(2)	123·8 (4)°	1·368 (5) Å
	N(1)	$\tilde{C}(2)$	117 (4)	0.89(6)
H	N(I)	$\tilde{C}(9)$	119 (4)	
N(1)	C(2)	$\tilde{C}(3)$	121.8 (5)	1.311 (6)
N(I)	$\tilde{C}(2)$	H(2)	106 (4)	
H(2)	$\tilde{C}(2)$	C(3)	132 (4)	1.08 (6)
C(2)	$\hat{C}(3)$	C(4)	117.8 (6)	1.367 (8)
$\tilde{C}(2)$	Č(3)	H(3)	123 (4)	
H(3)	C(3)	C(4)	119 (4)	0.99 (7)
C(3)	C(4)	C(10)	120.8 (5)	1.393 (8)
C(3)	C(4)	H(4)	116 (5)	
H(4)	C(4)	C(10)	123 (5)	0.86 (8)
C(4)	C(10)	C(5)	119.7 (5)	1.398 (6)
C(4)	C(10)	C(9)	118.6 (5)	
C(5)	C(10)	C(9)	121.6 (5)	1.477 (6)
C(10)	C(5)	O(16)	119.7 (5)	
C(10)	C(5)	C(6)	115.5 (5)	
O(16)	C(5)	C(6)	124.8 (5)	1.227 (6); 1.250
C(5)	C(6)	O(14)	112.6 (5)	1.433 (6)
C(5)	C(6)	C(7)	121.5 (5)	
O(14)	C(6)	C(7)	125.8 (5)	1.366 (6); 1.377
C(6)	C(7)	C(8)	123.0 (5)	1.359 (7)
C(6)	C(7)	H(7)	116 (4)	
H(7)	C(7)	C(8)	121 (4)	0.93 (7)
C(7)	C(8)	C(9)	119.1 (5)	1.411 (7)
C(7)	C(8)	N(11)	117.6 (5)	
N(11)	C(8)	C(9)	123.3 (5)	1.403(6); 1.404
C(8)	C(9)	C(10)	119.2 (4)	1.408 (6)
C(8)	C(9)	N(1)	123.8 (4)	1 440 (6)
C(10)	C(9)	N(1)	117.0 (4)	1.418 (6)
C(8)	N(11)	O(12)	119.7 (5)	1 0 40 (5) 1 0 (5
O(13)	N(11)	C(8)	118.8 (4)	1.249(5); 1.265
O(12)	N(11)	0(13)	121.4 (5)	1.238 (5); 1.255
C(6)	O(14)	C(15)	116.8 (5)	1 422 (0) 1 424
O(14)	C(15)	H(8)	115 (4)	1.432 (6); 1.434
O(14)	C(15)	H(9)	104 (4)	1.0((7)
H(10)	C(15)	O(14)	113 (4)	1.01 (2)
H(8)	C(15)	H(9)	104 (6)	1.01 (8)
H(9)	-C(15)	H(10)	110(6)	1.06(/)

maker, Waser, Marsh & Bergman (1959) was used for the least-squares plane calculation. The plane of the fused ring system intersects the *ab* plane in a 28.9° angle, and fused rings in molecules related by the c-glide lie in planes that deviate 1.4° from parallel. The intermolecular contacts between c-glide related molecules are the normal van der Waals variety. In the bifurcated hydrogen bond shown in Fig.1, H(1) is shared by an intramolecular hydrogen bond between N(1) and O(13) and by a strong intermolecular hydrogen bond linking N(1) to O(16) in a molecule related by the c-glide and a unit translation -b. With the exception of two somewhat close intermolecular contacts involving H(2), which are listed in Table 5 together with the hydrogen bond parameters, the non-bonded contacts were the normally expected ones.

The dielectric constant

The two maxima at positions for the hydrogen atoms in (II) and (III) were 0.14 and 0.12 e.Å⁻³ respectively

Table 5. Some intermolecular distances and angles

Atoms*	Distance	Angle
$N(1) \cdots O(16)$	2·779 (5) Å	
$N(1) \cdots O(13)$	2.620 (5)	
$O(13) \cdots O(16)$	2.963 (5)	
$H(1) \cdots O(16)$	2.05 (6)	
$H(1) \cdots O(13)$	1.99 (6)	
$N(1)-H(1)\cdots O(16)$		139 (6)°
$N(1)-H(1)\cdots O(13)$		126 (5)
$H(2) \cdots O(14)$	2.34 (7)	
$C(2) \cdots O(14)$	3.377 (7)	
$H(2) \cdots O(16)$	2.33 (7)	
$C(2) \cdots O(16)$	3.028 (5)	
$H(2)-C(2)\cdots O(14)$		14 (3)
$H(2)-C(2)\cdots O(16)$		41 (4)

* H(1), N(1) and O(13) are in the same molecule but O(14) and O(16) are in the molecule related by the *c*-glide and the translation (0, b, 0).

in the final difference map compared with an average background peak of 0.12 e.Å⁻³, so that they are possibly errors in the electron density. On the other hand, Cady & Larson (1965) interpreted similar peaks in the difference map of 1,3,5-triamine-2,4,5-trinitrotoluene as N-H bonding electrons delocalized in the H...O region of the N-H...O hydrogen bond. They repre-

sented the bonding by resonance structures $N-H \circ O$

and N H-O. The same explanation could apply here i.e. that these two residual peaks are N-H bonding electrons delocalized in the region near O(16) and O(13). Since the crystal structure analysis of (I) indicated an orientation of the polar hydrogen atom, which is attached to nitrogen, facing the keto-oxygen and one of the strongly polar oxygens of the nitro group (Fig. 1), it was conjectured whether this hydrogen might be labile enough to be transferred by an electric field to an adjacent oxygen atom. This would be expected to result in a high polarizability and dielectric constant, and if the proton were transferred intermolecularly an abnormally high dielectric loss should also occur since the crystal would be rendered conductive by the proton transfer. The dielectric constant and loss tangent of this compound were determined over a range of frequencies from 60 Hz to 1010 Hz to find evidence for the proton transfer polarization, if it occurs.

The dielectric measurements on the crystalline powder were made by compacting the powder into a measurable volume in some tests, and in others by vacuum impregnating the powder with a pure paraffin wax. Measurements on these specimens were made over a wide frequency range, up to 10^5 Hz with a General Radio 716 bridge and from 10^6 Hz to 5×10^7 Hz with the susceptance variation method resonant circuit technique. Several measurements were made with a resonant cavity at 2×10^8 Hz A single measurement was made at 9.5×10^9 Hz in a shorted wave guide. In this latter case, a paraffin impregnated powder was formed into a rectangular parallelopiped. The apparent density of the dry powder specimens varied, depending on the compression, between 0.77 and 0.95. From these values and the crystal density, 1.595, the volume fraction of the powder during measurement could be computed, and it ranged in different tests between 0.48 and 0.59.

The experimentally obtained dielectric constants were, of course, lower than that of the crystal because part of the volume measured was air or paraffin. The formula developed by Böttcher (1945) and confirmed by van Vessem & Bijvoet (1948) gave consistent and reasonable values of the solid crystal dielectric constant. These values ranged from 2.24 to 3.19 for the specimen and yielded calculated values for the crystal of 4.37 to 4.47, with one value out of this range at 4.05. These values were calculated from three different apparent density specimens, and one wax-filled specimen. The Böttcher equation (rearranged) is:

$$K_1 = \frac{2(K - K_2) + 2K_2\delta}{3K\delta - (K - K_2)} K,$$

where K_1 is the dielectric constant of the solid, K_2 of the suspending medium and K of the mixture, and δ is the volume fraction of solid.

The dielectric constant values for these crystals are at a level which is typical of compounds of a similar nature, where no proton transfer is suspected. For example, the dielectric constant of 2-methoxy-4-nitroaniline is 3.91 and of 2-methoxy-5-nitroanaline is 4.01, as reported by Rao (1965). The very small dispersion (decline) in dielectric constant between 60 and 10^{10} Hz indicates that no proton transfer or other very significant polarization process is limited within this frequency range. Very likely the polarization in the crystal is of an atomic (intramolecular polar vibration or rotation) process whose absorption and dispersion region lies in the infrared frequency range.

The resistivity of this material was shown to be very high and the loss tangent $(\tan \delta)$ was found to be quite low (0.0006 to 0.0018) over most of the frequency range. There was some evidence of a small (specimen tan $\delta_{max} < 0.006$) dispersion region in the vicinity 10⁷ to 10⁸ Hz but this was not delineated exactly. This low conductivity and low loss was consistent with the nearly constant level of dielectric constant over the wide frequency range studied. It certainly precluded any very significant continuous or discontinuous charge transfer through these crystals.

This research is supported by the U.S. Public Health Service, National Institutes of Health under Grant No. HE-09068 and in part under Grant No. AIO-3949. We wish to thank Dr R.D. Rosenstein for helping us with the application of the IBM 1620 minimum function programs in the solution of the structure.

References

- BÖTTCHER, C. J. F. (1945). Rec. Trav. chim. Pays-Bas, 64, 47.
 BUERGER, M. (1959). Vector Space, p. 252. New York: John Wiley.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, A FORTRAN Crystallographic Least-Squares Program. Oak Ridge National Laboratory, Tennessee.
- BUSING, W. R. & LEVY, H. A. (1964). Acta Cryst. 17, 142.
- CADY, H. H. & LARSON, A. C. (1965). Acta Cryst. 18, 485.
- CORFIELD, P. W. R. (1965). Solution of the Patterson Function by Superposition Methods, Technical Report. The Crystallography Laboratory, University of Pittsburgh.
- CORFIELD, P. W. R. & ROSENSTEIN, R. D. (1966). Trans. Amer. Cryst. Ass. 2, 17.
- ELDERFIELD, R. C., GENSLER, W. J., WILLIAMSON, T. A., GRIFFING, J. M., KUPCHAN, S. M., MAYNARD, J. T., KREYSA, F. J. & WRIGHT, J. B. (1946). J. Amer. Chem. Soc. 68, 1584.
- HUGHES, E. W. (1941). J. Amer. Chem. Soc. 65, 1737.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- PHILLIPS, D. C. (1956). Acta Cryst. 9, 819.
- RAO, S. R. (1965). Current Sci. 34, 455.
- SAX, M. & DESIDERATO, R. (1967). Acta Cryst. 23, 319.
- SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600.
- VESSEM, J. C. VAN & BIJVOET, J. M. (1948). Rec. Trav. chim. Pays-Bas, 67, 191.
- WILLIAMS, D. E. (1967). Private communication.